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Capacitance Parameters of Coupled Elliptic

Microstrip Disks in Layered

Anisotropic Media

RAFAEL R. BOIX AND MANUEL HORNO, MEMBER,IEEE

Abstract —An algorithm is provided to calculate the modal capaci-

tances and the gap capacitance of coupled microstrip elliptic disks

embedded in layered media with dielectric anisotropy. The capacitance

parameters determined are useful in accounting for coupling effects in

the design of interacting lumped microstrip components of elliptic

shape.

I. INTRODUCTION

When several printed microstrip conductors are involved in

the same circuit, the coupling effects between different conduc-

tors cannot be neglected. In this case, the modal capacitances or

the capacitance matrix coefficierits are valuable parameters in

describing the behavior of the circuit in a reasonable way [11, [2].

Resonators consisting of two coupled microstrip patches were

analyzed by Uzunoglu and Katechi [3] in terms of a circuit

model where the gap capacitance between conductor patches

was used to account for coupling. This model is simple and it

provides reliable results when compared with experimental data.

In this paper, we present an algorithm to calculate modal

capacitances and the gap capacitance of two symmetrically cou-

pled microstrip elliptic patches. The calculation of the gap

capacitance of coupled circular patches has already been re-

ported [3], [4]. Here, we introduce the eccentricity of the ellipses

as an additional design parameter because it is known that

elliptic patches have certain advantages over circular patches for

resonator and antenna applications [5]. In the algorithm built,

conductor elliptic patches are embedded in a multilayered sub-

strate with dielectric anisotropy. Variational techniques in the

spectral domain have been employed to calculate lower bounds

for the modal capacitances of the two-conductor configuration.

The value of the gap capacitance defined in [3] is easily obtained

in terms of the odd-mode capacitance and the capacitance of an

isolated elliptic plate [5].

II. SPECTRAL-DOMAIN COMPUTATION OF THE

MODAL CAPACITANCES

Fig. l(a) stands for the cross section of a lossless multidielec-

tric stratified medium with dielectric anisotropy. Two coplanar

elliptic conductor plates with equal dimensions lie on the sur-

face of the Mth dielectric layer of the stratified configuration.

Conductors are assumed to be Iossless and infinitely thin. The

position of the ellipses with respect to the Cartesian coordinate

system chosen is shown in Fig. l(b). The analysis carried out in

this paper not only includes the case a > b (elliptic plates with

aligned major axes), which is shown in Fig. l(b); h also includes

the cases a = b (circular plates) and a < b (elliptic plates with

aligned minor axes). The x = O plane in parts (a) and (b) of Fig.
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Fig. 1, (a) Cross section of a multilayered anisotropic substrate in which the

elliptic disks of Fig. l(b) are embedded. (b) Geomet~ for coupled elliptic

disks (a> b).

1 is assumed to be a geometrical symmetry plane for the

problem. Owing to this, the permittivity tensor of the anisotropic

dielectrics must be of the form

‘i=’oh”i:4 “=O”””N+l“)
Boundary interfaces i = O and i = N in Fig. l(a) can indepen-

dently represent electric walls, magnetic walls, or open bound-

aries extending to infinity.

Since the coupling is symmetrical, even and odd modes of

excitation exist. Therefore, the capacitance matrix of the two-

conductor configuration is completely specified in terms of the

modal capacitances C. and CO. The gap capacitance between

the conductor plates defined in [3] can be expressed in terms of

the odd capacitance as

Cg=;(co–c) (2)

Here C stands for the capacitance of one of the elliptic plates in
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the absence Qf the other elliptic plate. This capacitance value

can be obtained by using the algorithm proposed in [5].

When a twQ-dimensional Fourier transform is performed from

the coordinates x and z defined in parts (a) and (b) of Fig. 1 to

the spectral variables a and 13, the electric energy associated

with each mode in the two-conductQr configuration can be

expressed as [5], [6]

ue,o=&~+m/+mG(~, B)16e,o(~,B)12~~~P (3)
—m —m

where G(a, ~) is the spectral Green;s function defined in [6] and

~e,O (a, ~) stand for the FQurier transforms of the charge density

on both elliptic plates in each mode. If an adequate approxima-

tion is used for the charge density on the elliptic plates in each

mode, the stationary properties of (3) make it pQssible to obtain

an accurate value of the modal energies Ue,. [5], [61. Since a

symmetry plane exists in the configuration proposed, we only

need to approximate the charge density on Qne conductor plate

to calculate Ue ~. This conductQr plate has been chQsen to be the

one corresponding tQ x >0 in Fig. l(b). TQ obtain the transform

of the charge density on the mentioned plate in closed fQrm, a

lQcal coordinate transformation specially adapted tQ the elliptic

geometry of the plate is carried out [5]. This coordinate transfor-

mation can be written as

x–d=r’cos~’

z=(b/a)r’sin~’. (4)

In [5] it was assumed that the charge density on the conductor

elliptic plate was not a function of the local +’ coordinate

defined in (4). When we analyze coupled elliptic plates, the

error Qbtained by neglecting the charge density dependence Qn

the ~’ coordinate seems to be much more important, owing to

coupling effects. In the odd mode, the charge on each conductor

plate is concentrated in the region closest to the other plate,

whereas in the even mode, the charge is concentrated in the

region farthest from the other plate. To account for these

charge displacements in a reasonable way, the charge density

approximation Qn the elliptic plates should include the depen-

dence on the ~’ coordinate.

For substrates having the type of anisotropy assumed in (l),

the plane z = O in Fig. l(b) is a magnetic wall. Owing to this> the

modal charge densities on the ellipse on the right in Fig. l(b)

must be such that pe, O(r’, 0’) = Pe, ~(r’, – 4’), where r’ and & are

defined in (4). To satisfy this condition, we have approximated

the charge density on that elliptic plate by using trial function

expansions of the form

Pe,O(r’,#) = fl fi CfXPmn(r’9#) (5a)
~=on=o

where

pmn(~’,d’)= pn(Ocos(d’) (S?’J=o,.. ”,p;rz=o, ”””,q).

(5b)

The opposite charge displacements on the plates in each

mode can be accurately accounted for by using an adequate

number of cosine functions on the ~’ coordinate in (5a).

FQllowing [5], we assume that the functions pn(r’) are given by

T,n(r’/a)
p~(r’) =

(1-(rf/a)2)”2

(n=o,.., q). (6)
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Fig. 2. Gap capacitance of coupled circular microstrip disks as a function of

the normalized distance between the disks 2d /a (a/H = 1.0 is used in all

the graphs). Comparison with the results reported in [4] (+, x, A) is
provided.

In this expression, T2.(x) are Chebyshev polynomials of the first

kind.

It can be seen that all the functions defined in (6) account for

the charge density singularity at the edge of the elliptic plate.

The number of the functions pn(r’) necessary to provide an

accurate approximation of the charge density dependence Qn

the r’ variable must be higher as the plate surface/substrate

thickness ratio increases [5].

When the modal charge densities on the right plate in Fig.

l(a) are assumed to be of the form proposed in (5a) and (5b),

the analytical determhiation of the spectral functions b., o(a, P)

can be considerably simplified by using a variable transforma-

tion in the two-dimensional Fourier domain [5]. This variable

transformation is given by

a=ycoso

~=(a/b)ysinfl. (7)

In terms of the new variables y and ,0 the modal charge

density Fourier transforms can be expressed as

(8a)

where

(nz=O,”, p;n=O,,q). (8b)
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Fig. 3. Normalized modal capacitances of coupled elliptic microstrip disks

for different isotropic and anisotropic substrates as a function of the

normalized distance between the disks 2d / a. Solid lines stand for the odd

mode and dashed lines stand for the even mode (a/H = 1.0 and b/H= 5.0

are used in all the graphs). The permittivities are given by

(I) Isotrouic Kauton: e.= 3.0,

(11) Aniso~ropic Kapton’: ●L =.3= 3.0; CA= 3.5; GA= O.

(111) Isotropic PTFE: C.= 2.45.

(IV) Anisotroptic PTFE: efi = 2.8% .2= 2.45; =X= 2.95; <X= O.

The integrals appearing in (8b) stand fQr the rnth Hankel

transform of the radial trial functions p~(r’).

When the new spectral variables y and Q defined in (7) are

used in (3) and the expansions given in (8a) for the modal

charge density transforms ~e,O(y, 0) are introduced in the re-

sulting expressions fQr Ue,~, the modal energies become explicit

functions of the unknown coefficients c~~ (m = O,, . . . p;
~= (),. . . . q). To obtain these coefficients, the energ in each

mQde is separately required to be a minimum on condition that

the absolute value of the total charge on each plate be equal to

1 [5]. Once the coefficients c~: are determined, upper bounds

for the modal energies U,,. and lower bQunds for the lower

capacitances C.,. ( =1/ U.,.) can be obtained.

III. NUMERICAL RESULTS

In Fig. 2, we compare our results for the gap capacitance of

coupled circular microstrip disks (zero eccentricity) printed on

isotropic substrates with those reported in [4]. As far as graphic

comparison is possible, agreement seems to be very goQd.

In Fig. 3, we show hQw the values of the normalized mQdal

capacitances are affected when the effect of anisotropy is ne-

glected. When Kapton is used as a substrate, the effect of

anisotropy is investigated by changing its dielectric constant in

the y direction from the isotropic value to the anisotropic value.

In the case of PTFE, the dielectric constants in the x and z

directions are assumed to change. The difference between the

isotropic and the anisotropic results is about 10% in the case of

Kapton and about z.s~. in the case of PTFE.
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Fig. 4. Coupling coefficient C8 / C of coupled elliptic and circular mi-

crostrip disks in suspended configuration as a function of the vacuum

filling fraction. The dielectric is sapphire with aligned optical axis: (efi =

●73 = 9.4; ●jz = 11.6; c& = O); a/(H1 + H2)= 1; 2(d – a)/(H1 + Hz) = 0.1.

In Fig. 4, coupled elliptic disks on a suspended microstrip

configuration are analyzed. The coupling coefficient Cg / C,

which is a nondimensional parameter defined in [3], is obtained

as a function of the relative pQsition of the interface between

vacuum and dielectric. Optimum coupling is reached for a

certain position of that interface in which the ratio of the

pQrtion of electric energy between the disks to the pQrtion of

electric energy beneath the disks becomes a maximum.

IV. CONCLUSIONS

Variational techniques in the spectral domain are applied to

the calculation of the modal capacitances and the gap capaci-

tance of two symmetrically coupled microstrip elliptic disks. The

disks are embedded in multilayered anisotropic substrates. Trial

functions for the charge density on the disks are chosen in such

a way that they satisfy the physical constraints of the problem.
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