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Capacitance Parameters of Coupled Elliptic
Microstrip Disks in Layered
Anisotropic Media
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Abstract —An algorithm is provided to calculate the modal capaci-
tances and the gap capacitance of coupled microstrip elliptic disks
embedded in layered media with dielectric anisotropy. The capacitance
parameters determined are useful in accounting for coupling effects in
the design of interacting lumped microstrip components of elliptic
shape.

I. INTRODUCTION

When several printed microstrip conductors are involved in
the same circuit, the coupling effects between different conduc-
tors cannot be neglected. In this case, the modal capacitances or
the capacitance matrix coefficients are valuable parameters in
describing the behavior of the circuit in a reasonable way [1], [2].
Resonators consisting of two coupled microstrip patches were
analyzed by Uzunoglu and Katechi [3] in terms of a circuit
model where the gap capacitance between conductor patches
was used to account for coupling. This model is simple and it
provides reliable results when compared with experimental data.

In this paper, we present an algorithm to calculate modal
capacitances and the gap capacitance of two symmetrically cou-
pled microstrip elliptic patches. The calculation of the gap
capacitance of coupled circular patches has already been re-
ported [3], [4]. Here, we introduce the eccentricity of the ellipses
as an additional design parameter because it is known that
elliptic patches have certain advantages over circular patches for
resonator and antenna applications [5]. In the algorithm built,
conductor elliptic patches are embedded in a multilayered sub-
strate with dielectric anisotropy. Variational techniques in the
spectral domain have been employed to calculate lower bounds
for the modal capacitances of the two-conductor configuration.
-The value of the gap capacitance defined in [3] is easily obtained
in terms of the odd-mode capacitance and the capacitance of an
isolated elliptic plate {5].

II.  SpectrAL-DoMAIN COMPUTATION OF THE
MobpaL CAPACITANCES

Fig. 1(a) stands for the cross section of a lossless multidielec-
tric stratified medium with dielectric anisotropy. Two coplanar
elliptic conductor plates with equal dimensions lie on the sur-
face of the Mth dielectric layer of the stratified configuration.
Conductors are assumed to be lossless and infinitely thin. The
position of the ellipses with respect to the Cartesian coordinate
system chosen is shown in Fig. 1(b). The analysis carried out in
this paper not only includes the case a > b (elliptic plates with
aligned major axes), which is shown in Fig. 1(b); it also includes
the cases a=b (circular plates) and a < b (elliptic plates with
aligned minor axes). The x = 0 plane in parts (a) and (b) of Fig.
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Fig. 1. (a) Cross section of a multilayered anisotropic substrate in which the
elliptic disks of Fig. 1(b) are embedded. (b) Geometry for coupled elliptic
disks (a > b).

1 is assumed to be a geometrical symmetry plane for the
problem. Owing to this, the permittivity tensor of the anisotropic
dielectrics must be of the form

i 0 0
G=co| 0 b €hi| (=0, N+1). (1)
0 Efks,i €§k3,i

Boundary interfaces i =0 and i = N in Fig. 1(a) can indepen-
dently represent electric walls, magnetic walls, or open bound-
aries extending to infinity.

Since the coupling is symmetrical, even and odd modes of
excitation exist. Therefore, the capacitance matrix of the two-
conductor configuration is completely specified in terms of the
modal capacitances C, and C,. The gap capacitance between
the conductor plates defined in [3] can be expressed in terms of
the odd capacitance as

Cy=3(C,-0). @

Here C stands for the capacitance of one of the elliptic plates in
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the absence of the other elliptic plate. This capacitance value
can be obtained by using the algorithm proposed in [5].

When a two-dimensional Fourier transform is performed from
the coordinates x and z defined in parts (a) and (b) of Fig. 1 to
the spectral variables a and B, the electric energy associated
with each mode in the two-conductor configuration can be
expressed as [5], [6]

1 +ow 400 B )
Uo=gz] [ GaB)ib. (a.B) dadp  (3)
where G(a, B) is the spectral Green’s function defined in [6] and
Be,o (a, B) stand for the Fourier transforms of the charge density
on both elliptic plates in each-mode. If an adequate approxima-
tion is used for the charge density on the elliptic plates in each
mode, the stationary properties of (3) make it possible to obtain
an accurate value of the modal energies U, , [5], [6]. Since a
symmetry plane exists in the configuration proposed, we only
need to approximate the charge density on one conductor plate
to calculate U, ,,. This conductor plate has been chosen to be the
one corresponding to x > 0 in Fig. 1(b). To obtain the transform
of the charge density on the mentioned plate in closed form, a
local coordinate transformation specially adapted to the elliptic
geometry of the plate is carried out [5]. This coordinate transfor-
mation can be written as

x—d=r'cos¢’
z=(b/a)r'sing’. (4)

In [5] it was assumed that the charge density on the conductor
elliptic plate was not a function of the local ¢’ coordinate
defined in (4). When we analyze coupled elliptic plates, the
error obtained by neglecting the charge density dependence on
the ¢' coordinate seems to be much more important, owing to
coupling effects. In the odd mode, the charge on each conductor
plate is concentrated in the region closest to the other plate,
whereas in the even mode, the charge is concentrated in the
region farthest from the other plate. To account for these
charge displacements in a reasonable way, the charge density
approximation on the elliptic plates should include the depen-
dence on the ¢’ coordinate.

For substrates having the type of anisotropy assumed in (1),
the plane z = 0 in Fig. 1(b) is a magnetic wall. Owing to this, the
modal charge densities on the ellipse on the right in Fig. 1(b)
must be such that p, ,(r',¢)=p, (r', — ¢), where ¢’ and ' are
defined in (4). To satisfy this condition, we have approximated
the charge density on that elliptic plate by using trial function
expansions of the form

Peo(rs ) = S Y Colpmlr ) (52)

m=0n=0
where »
Pn(5 0 = p(r)cos(md)  (m=0,--,p;n=0,",q).
(5b)

The opposite charge displacements on the plates in each
mode can be accurately accounted for by using an adequate
number of cosine functions on the ¢’ coordinate in (5a).

Following [5], we assume that the functions p,(r") are given by

TZn(rl/a)
)1/2

p(r)=————5; (n=0,9).  (6)
(1—(r’/a)

o | —

Cg/eoa

24/a

Fig. 2. Gap capacitance of coupled circular microstrip disks as a function of
the normalized distance between the disks 2d /a (@ /H = 1.0 is used in all
the graphs). Comparison with the results reported in [4] (4, X, A) is
provided.

In this expression, T,,(x) are Chebyshev polynomials of the first
kind.

It can be seen that all the functions deflned in (6) account for
the charge density singularity at the edge of the elliptic plate.
The number of the functions p,(r') necessary to provide an
accurate approximation of the charge density dependence on
the r' variable must be higher as the plate surface/substrate
thickness ratio increases [5]. .

When the modal charge densities on the right plate in Fig.
1(a) are assumed to be of the form propesed in (5a) and (5b),
the analytical determination of the spectral functions p, ,(a, 8)
can be considerably simplified by using a variable transforma-
tion in the two-dimensional Fourier domain [5]. This variable
transformation is given by

a=vycosf)
B=(a/b)ysinQ. (7

In terms of the new variables y and ) the modal charge
density Fourier transforms can be expressed as

pe 0(7’&)‘)'_ Z Z C’i;ﬁ;g(y,ﬂ) (83')
m=0n=0
where
d Q mar
e Q b «cos(y cos +—)
Fi':"(y ) =——cos (mQ) 2
Prun(7>2)

) mr
—js1n(ydc0s9+—2—)

f “on(F) Ty ) dr

(m=0,+,p;n=0,,q).

(8b)
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Fig. 3. Normalized modal capacitances of coupled elliptic microstrip disks
for different isotropic and anisotropic substrates as a function of the
normalized distance between the disks 2d /a. Solid lines stand for the odd
mode and dashed lines stand for the even mode (a /H =1.0and b /H=5.0
are used in all the graphs). The permittivities are given by

(I)  Isotropic Kapton: €, = 3.0.

(II)  Anisotropic Kapton: ef = e =3.0; e} = 3.5; ¢ =0.
(1) Isotropic PTFE: €, = 2.45.
(V)  Anisotroptic PTFE: eff = 2.89; e = 2.45; e — 2.95; e =0.

The integrals appearing in (8b) stand for the mth Hankel
transform of the radial trial functions p,(r").

When the new spectral variables y and Q defined in (7) are
used in (3) and the expansions given in (8a) for the modal
charge density transforms g, (v, Q) are introduced in the re-
sulting expressions for U, ,, the modal energies become explicit
functions of the unknown coefficients c¢%2 (m =0, -, p;
n=0,---,¢). To obtain these coefficients, the energy in each
mode is separately required to be a minimum on condition that
the absolute value of the total charge on each plate be equal to
1 [5]. Once the coefficients cg,2 are determined, upper bounds
for the modal energies U, , and lower bounds for the lower
capacitances C, , (=1/U, ,) can be obtained.

III. NumericaL Resurts

In Fig. 2, we compare our results for the gap capacitance of
coupled circular microstrip disks (zero eccentricity) printed on
isotropic substrates with those reported in [4]. As far as graphic
comparison is possible, agreement seems to be very good.

In Fig. 3, we show how the values of the normalized modal
capacitances are affected when the effect of anisotropy is ne-
glected. When Kapton is used as a substrate, the effect of
anisotropy is investigated by changing its dielectric constant in
the y direction from the isotropic value to the anisotropic value.
In the case of PTFE, the dielectric constants in the x and z
directions are assumed to change. The difference between the
isotropic and the anisotropic results is about 10% in the case of
Kapton and about 2.5% in the case of PTFE.
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Fig. 4. Coupling coefficient C, /C of coupled elliptic and circular mi-
crostrip disks in suspended configuration as a function of the vacuum
filling fraction. The dielectric is sapphire with aligned optical axis: (e =
e5=94 e =11.6; e =0); a /(Hy + Hy)=1; 2(d — @) /(H, + H,)=0.1.

In Fig. 4, coupled elliptic disks on a suspended microstrip
configuration are analyzed. The coupling coefficient C,/C,
which is a nondimensional parameter defined in [3], is obtained
as a function of the relative position of the interface between
vacuum and dielectric. Optimum coupling is reached for a
certain position of that interface in which the ratio of the
portion of electric energy between the disks to the portion of
electric energy beneath the disks becomes a maximum.

IV. ConcLusions

Variational techniques in the spectral domain are applied to
the calculation of the modal capacitances and the gap capaci-
tance of two symmetrically coupled microstrip elliptic disks. The
disks are embedded in multilayered anisotropic substrates. Trial
functions for the charge density on the disks are chosen in such
a way that they satisfy the physical constraints of the problem.
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